ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 100]      



Задача 61453  (#11.026)

Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Докажите, что при всех натуральных n число   f (n) = 22n–1 – 9n² + 21n – 14   делится на 27.

Прислать комментарий     Решение

Задача 61454  (#11.027)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
[ Перебор случаев ]
Сложность: 4
Классы: 8,9,10,11

Для каких натуральных n в выражении

±12±22±32±...±n2

можно так расставить знаки + и -, что в результате получится 0?

Прислать комментарий     Решение

Задача 61455  (#11.028)

Тема:   [ Функции нескольких переменных ]
Сложность: 2+
Классы: 8,9,10,11

Определение. Пусть функция f (x, y) задана во всех точках плоскости с целыми координатами. Назовем функцию f (x, y) гармонической, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть:
f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)).
Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической.

Прислать комментарий     Решение

Задача 61456  (#11.029)

Тема:   [ Функции нескольких переменных ]
Сложность: 3-
Классы: 8,9,10,11

Пусть f (x, y) — гармоническая функция (определение смотри в задаче 11.28). Докажите, что функции $ \Delta_{x}^{}$f (x, y) = f (x + 1, y) - f (x, y) и $ \Delta_{y}^{}$f (x, y) = f (x, y + 1) - f (x, y) также будут гармоническими.

Прислать комментарий     Решение

Задача 61457  (#11.030)

 [Дискретная теорема Лиувилля]
Тема:   [ Функции нескольких переменных ]
Сложность: 4+
Классы: 8,9,10,11

Дискретная теорема Лиувилля. Пусть f (x, y) — ограниченная гармоническая (определение смотри в задаче 11.28) функция, то есть существует положительная константа M такая, что

$\displaystyle \forall$(x, y) $\displaystyle \in$ $\displaystyle \mathbb {Z}$2    | f (x, y)| $\displaystyle \leqslant$ M.

Докажите, что функция f (x, y) равна константе.
Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .