ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 57211

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 2
Классы: 8,9

Потроить треугольник по стороне c, медиане к стороне a ma и медиане к стороне b mb.
Прислать комментарий     Решение


Задача 57212

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 2
Классы: 8,9

Потроить треугольник по стороне a, стороне b и высоте к стороне a ha.
Прислать комментарий     Решение


Задача 57213

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Потроить треугольник по высоте к стороне b hb, высоте к стороне c hc и медиане к стороне a ma.
Прислать комментарий     Решение


Задача 57214

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Потроить треугольник по $ \angle$A, высоте к стороне b hb и высоте к стороне c hc.
Прислать комментарий     Решение


Задача 57215

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Потроить треугольник по стороне a, высоте к стороне b hb и медиане к стороне b mb.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .