ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Имеются чашечные весы и 100 монет, среди которых несколько (больше 0, но меньше 99) фальшивых. Все фальшивые монеты весят одинаково, все настоящие тоже весят одинаково, при этом фальшивая монета легче настоящей. Можно делать взвешивание на весах, заплатив перед взвешиванием одну из монет (неважно, фальшивую или настоящую). Докажите, что можно с гарантией обнаружить настоящую монету.

Вниз   Решение


Автор: Фольклор

Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться). Каждый из учеников вытянул один билет. Учитель может произвести следующую операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.)

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108029  (#1)

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

При каком отношении оснований трапеции существует прямая, на которой шесть точек пересечения с диагоналями, боковыми сторонами и продолжениями оснований трапеции высекают пять равных отрезков?

Прислать комментарий     Решение

Задача 97969  (#2)

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Теория групп (прочее) ]
Сложность: 4+
Классы: 8,9,10

Прямой угол разбит на бесконечное число квадратных клеток со стороной единица. Будем рассматривать ряды клеток, параллельные сторонам угла (вертикальные и горизонтальные ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?

Прислать комментарий     Решение

Задача 97973  (#3)

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Двоичная система счисления ]
Сложность: 4
Классы: 8,9,10

Автор: Фольклор

P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.

Прислать комментарий     Решение

Задача 97974  (#4)

Темы:   [ Двоичная система счисления ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться). Каждый из учеников вытянул один билет. Учитель может произвести следующую операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.)

Прислать комментарий     Решение

Задача 97975  (#5)

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Анджанс А.

Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .