|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т.е. имела общие участки границы) с тремя другими? Докажите, что многочлен степени n имеет не более чем n корней. Три офиса A, B и C одной фирмы расположены в вершинах треугольника. В офисе A работают 10 человек, в офисе B - 20, а в офисе C - 30. Где нужно построить столовую, чтобы суммарное расстояние, проходимое всеми сотрудниками фирмы, было бы как можно меньше? а) Докажите, что если в треугольнике медиана совпадает с высотой, то этот треугольник равнобедренный. б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный. Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета? Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно Попробуйте быстро найти сумму всех цифр в этой таблице: Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]
Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей?
Рассматривается последовательность слов из букв "A" и "B". Первое слово – "A", второе – "B". k-е слово получается приписыванием к (k–2)-му слову справа (k–1)-го (так что начало последовательности имеет вид: "A", "B", "AB", "BAB", "ABBAB", ...). Может ли в последовательности встретиться "периодическое" слово, то есть слово, состоящее из нескольких (по меньшей мере двух) одинаковых кусков, идущих друг за другом, и только из них?
P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.
Прямой угол разбит на бесконечное число квадратных клеток со стороной единица. Будем рассматривать ряды клеток, параллельные сторонам угла (вертикальные и горизонтальные ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|