ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т.е. имела общие участки границы) с тремя другими?

Вниз   Решение


Докажите, что многочлен степени n имеет не более чем n корней.

ВверхВниз   Решение


Три офиса A, B и C одной фирмы расположены в вершинах треугольника. В офисе A работают 10 человек, в офисе B - 20, а в офисе C - 30. Где нужно построить столовую, чтобы суммарное расстояние, проходимое всеми сотрудниками фирмы, было бы как можно меньше?

ВверхВниз   Решение


а) Докажите, что если в треугольнике медиана совпадает с высотой, то этот треугольник равнобедренный.

б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный.

ВверхВниз   Решение


Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета?

ВверхВниз   Решение


Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
  а) по 2 монеты;
  б) по 3 монеты;
  в) по 4 монеты;
  г) по 5 монет;
  д) по 6 монет;
  е) по 7 монет?
(Разрешается класть монеты одну на другую.)

ВверхВниз   Решение


Попробуйте быстро найти сумму всех цифр в этой таблице:

ВверхВниз   Решение


Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 97965

Темы:   [ Композиции симметрий ]
[ Поворот помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.

Прислать комментарий     Решение

Задача 97968

Темы:   [ Покрытия ]
[ Малые шевеления ]
[ Общая касательная к двум окружностям ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей?

Прислать комментарий     Решение

Задача 97970

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
[ Числа Фибоначчи ]
Сложность: 4
Классы: 7,8,9

Рассматривается последовательность слов из букв "A" и "B". Первое слово – "A", второе – "B". k-е слово получается приписыванием к (k–2)-му слову справа (k–1)-го (так что начало последовательности имеет вид:  "A", "B", "AB", "BAB", "ABBAB", ...).  Может ли в последовательности встретиться "периодическое" слово, то есть слово, состоящее из нескольких (по меньшей мере двух) одинаковых кусков, идущих друг за другом, и только из них?

Прислать комментарий     Решение

Задача 97973

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Двоичная система счисления ]
Сложность: 4
Классы: 8,9,10

Автор: Фольклор

P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.

Прислать комментарий     Решение

Задача 97969

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Теория групп (прочее) ]
Сложность: 4+
Классы: 8,9,10

Прямой угол разбит на бесконечное число квадратных клеток со стороной единица. Будем рассматривать ряды клеток, параллельные сторонам угла (вертикальные и горизонтальные ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .