ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В семье программистов родился ребенок. Папа-программист хочет назвать ребенка так, чтобы его имя подходило под шаблон P, а мама-программист настаивает на шаблоне M. Найдите самое короткое имя, удовлетворяющее обоим шаблонам, или сообщите, что такого имени не существует и семья находится на грани развода.

Шаблон представляет собой последовательность букв русского алфавита (буква «ё» не используется) и специальных символов, которые имеют следующие значения: 
? любая буква 
* любое (возможно нулевое) число букв 
[P]  любая буква из диапазона P
[!P] любая буква не из диапазона P
{n} предыдущий символ, повторенный ровно n раз
{n;}  предыдущий символ, повторенный не менее n раз 
{n;m} предыдущий символ, повторенный от n до m раз 
предыдущий символ, повторенный не менее одного раза

При этом 0 ≤ n ≤ m ≤ 10. Диапазон задается перечислением через запятуюсимволов и интервалов символов. Интервал символов записывается в виде a-b, что означает любую букву, расположенную в алфавите между a и b включительно.
Символы могут комбинироваться. Например, запись [а,о,е,у,и,ы,э-я]@ означает произвольную непустую последовательность гласных (необязательно повторяющихся). Запрещается записывать подряд фигурные
скобки и символы @.

Входные данные

В первой строке входного файла записан шаблон папы, а во второй – шаблон мамы. Длина каждого шаблона не превосходит 80 символов.

Выходные данные

Выведите в выходной файла кратчайшее имя ребенка, удовлетворяющее обоим шаблонам, если такое имя существует. Имя ребенка должно состоять из букв русского алфавита. Большие и маленькие буквы не различаются. В случае нескольких возможных имен требуется вывести первое по алфавиту. Если искомого имени не существует, выведите сообщение «NO SOLUTION».

Пример входного файла

?ик*т[а-о][л-р]*
В??тор*

Пример выходного файла

Виктор

Вниз   Решение


Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 97839  (#1)

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если  OD = OE,  то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.

Прислать комментарий     Решение

Задача 97840  (#2)

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

Прислать комментарий     Решение

Задача 97841  (#3)

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Решить в целых числах уравнение  2n + 7 = x².

Прислать комментарий     Решение

Задача 108606  (#4)

Темы:   [ Неравенство треугольника ]
[ Симметрия помогает решить задачу ]
[ Четырехугольник (неравенства) ]
Сложность: 3
Классы: 8,9

В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.

Прислать комментарий     Решение

Задача 97843  (#5)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .