|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны две точки A и B. Две окружности касаются прямой AB (одна — в точке A, другая — в точке B) и касаются друг друга в точке M. Найдите ГМТ M. В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы. В клетчатом квадрате 10×10 отмечены центры всех единичных квадратиков (всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам квадрата, нужно провести, чтобы вычеркнуть все отмеченные точки? Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника A было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и
коэффициент силы по формуле: сумма очков тех участников, у кого A выиграл, минус сумма очков тех, кому он проиграл. Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых
согласованно вращающихся шестерёнок так, чтобы углы между сцепленными
шестерёнками были не меньше 150°? При этом: Работу алгоритма Евклида (см. задачу 60488) можно представить следующим образом. В прямоугольник размерами m0×m1 (m1 ≤ m0) укладываем a0 квадратов размера m1×m1, в оставшийся прямоугольник размерами m1×m2 (m2 ≤ m1) укладываем a1 квадратов размера m2×m2, и т. д. до тех пор, пока весь прямоугольник не покроется квадратами. Выразите общее число квадратов через элементы цепной дроби числа m0/m1. В выпуклом четырёхугольнике ABCD точки E, F и G – середины сторон AB, BC и AD соответственно, причём GE ⊥ AB, GF ⊥ BC. Найдите угол ACD. |
Страница: 1 [Всего задач: 1]
В выпуклом четырёхугольнике ABCD точки E, F и G – середины сторон AB, BC и AD соответственно, причём GE ⊥ AB, GF ⊥ BC. Найдите угол ACD.
Страница: 1 [Всего задач: 1] |
|||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|