Страница: 1 [Всего задач: 3]
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть a, b, c – такие целые неотрицательные числа, что
28a + 30b + 31c = 365. Докажите, что a + b + c = 12.
|
|
Сложность: 4 Классы: 8,9,10
|
Существует ли натуральное число, делящееся на 1998, сумма цифр которого
меньше 27?
|
|
Сложность: 5 Классы: 9,10,11
|
Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых
согласованно вращающихся шестерёнок так, чтобы углы между сцепленными
шестерёнками были не меньше 150°? При этом:
для простоты шестёренки считаются кругами;
шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
угол между сцепленными шестерёнками – это угол между радиусами
их окружностей, проведёнными в точку касания;
первая шестерёнка должна быть сцеплена со второй, вторая – с
третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.
Страница: 1 [Всего задач: 3]