|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K. Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.) Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы). Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны. Внутри выпуклого многоугольника взяты точки P и Q. Докажите, что существует вершина многоугольника, менее удаленная от Q, чем от P. Решите в целых числах уравнение 19x³ − 84y² = 1984. |
Страница: 1 [Всего задач: 5]
Жюри олимпиады решило по её результатам сопоставить каждому участнику натуральное число таким образом, чтобы по этому числу можно было однозначно восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых двух школьников большее число сопоставлялось тому, кто набрал большую сумму баллов. Помогите жюри решить эту задачу!
Решите в целых числах уравнение 19x³ − 84y² = 1984.
В некотором царстве, в некотором государстве было выпущено неограниченное
количество монет достоинством в n1, n2, n3, ... копеек, где
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|