|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".) В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены n² + 1 отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют |
Страница: 1 [Всего задач: 5]
Dписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AA1 = BB1 = CC1. Докажите, что треугольник ABC правильный.
Доказать, что 4m − 4n делится на 3k+1 тогда и только тогда, когда m − n делится на 3k.
На доске после занятия осталась запись:
В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены n² + 1 отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|