ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый?

Вниз   Решение


Доказать, что при любых  x >   и  y >   выполняется неравенство  x4x³y + x²y² – xy³ + y4 > x² + y².

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 79438

Темы:   [ Сочетания и размещения ]
[ Доказательство от противного ]
[ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 8,9,10

Двадцать городов соединены 172 авиалиниями.
Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

Прислать комментарий     Решение

Задача 79426

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного l существует отрезок длины l, у которого оба конца одного цвета.
Прислать комментарий     Решение


Задача 55544

Темы:   [ Теорема синусов ]
[ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9,10

Dписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AA1 = BB1 = CC1.  Докажите, что треугольник ABC правильный.

Прислать комментарий     Решение

Задача 79425

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Найти все пары целых чисел  (x, y),  удовлетворяющих уравнению  x² = y² + 2y + 13.

Прислать комментарий     Решение

Задача 79430

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9

Доказать, что при любых  x >   и  y >   выполняется неравенство  x4x³y + x²y² – xy³ + y4 > x² + y².

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .