ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Петя разрезал фигуру на две равные части, как показано на рисунке. Придумайте, как разрезать эту фигуру на две равные части другим способом.


Вниз   Решение


ABC – равнобедренный треугольник;  AB = BC,  BH – высота, M – середина стороны AB, K – точка пересечения BH с описанной окружностью треугольника BMC. Доказать, что  BK = 3/2 R,  где R – радиус описанной окружности треугольника ABC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 78280

Темы:   [ Наибольшая или наименьшая длина ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9,10

Даны два пересекающихся отрезка и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна (сравните с задачей 1 для 10 класса).
Прислать комментарий     Решение


Задача 78278

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Основные свойства центра масс ]
[ Аналитический метод в геометрии ]
Сложность: 4
Классы: 8,9,10

На сторонах AB, BC, CA правильного треугольника ABC найти такие точки X, Y, Z (соответственно), чтобы площадь треугольника, образованного прямыми CX, BZ, AY, была вчетверо меньше площади треугольника ABC и чтобы было выполнено условие: $$\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZA}.$$
Прислать комментарий     Решение


Задача 78282

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 4
Классы: 9,10,11

Дана система уравнений:
   
Какие значения может принимать x25?

Прислать комментарий     Решение

Задача 78288

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Поворотная гомотетия (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

ABC – равнобедренный треугольник;  AB = BC,  BH – высота, M – середина стороны AB, K – точка пересечения BH с описанной окружностью треугольника BMC. Доказать, что  BK = 3/2 R,  где R – радиус описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 78299

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Неравенства с площадями ]
[ Площади криволинейных фигур ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 9,10

Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние d = 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .