ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Обсуждая в классе зимние каникулы, Саша сказал: "Теперь, после того как я слетал в Аддис-Абебу, я встречал Новый год во всех возможных полусферах Земли, кроме одной!"
В каком минимальном количестве мест встречал Новый год Саша?
Места, где Саша встречал Новый год, считайте точками на сфере. Точки на границе полусферы не считаются принадлежащими этой полусфере.

Вниз   Решение


Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 78229

Темы:   [ Системы точек и отрезков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Имеется m точек, некоторые из которых соединены отрезками так, что каждая соединена с l точками. Какие значения может принимать l?
Прислать комментарий     Решение


Задача 78207

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 8,9

M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78212

Тема:   [ Системы точек и отрезков (прочее) ]
Сложность: 4-
Классы: 9,10

Даны отрезки AB, CD и точка O. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку O, не пересекает другой отрезок. Сколько может быть отмеченных концов?
Прислать комментарий     Решение


Задача 78219

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх.
Доказать, что A не является точным квадратом.

Прислать комментарий     Решение

Задача 78232

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 10,11

Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .