|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что если a и b – целые числа и b ≠ 0, то существует единственная пара чисел q и r, для которой a = bq + r, 0 ≤ r < |b|. Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше? Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя? Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$. Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам. |
Страница: 1 [Всего задач: 5]
Доказать, что число, состоящее из 300 единиц и некоторого количества нулей, не является точным квадратом.
В турнире каждый шахматист половину всех очков набрал во встречах с участниками, занявшими три последних места.
Доказать, что существует бесконечно много натуральных чисел, не представимых в виде p + n2k ни при каких простых p и целых n и k.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|