|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На доске написано: Найдите геометрическое место точек M, лежащих внутри правильного треугольника ABC, для которых MA2 = MB2 + MC2. К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность? На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1.
Даны сто чисел x1, x2,..., x100, сумма которых равна 1. При этом абсолютные величины разностей xk+1 – xk меньше 1/50 каждая.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|