ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.

Вниз   Решение


В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны.

ВверхВниз   Решение


Докажите, что многочлен  x12x9 + x4x + 1  при всех значениях x положителен.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 77918

Темы:   [ Алгебраические неравенства (прочее) ]
[ Перебор случаев ]
[ Разложение на множители ]
Сложность: 3-
Классы: 8,9

Докажите, что многочлен  x12x9 + x4x + 1  при всех значениях x положителен.

Прислать комментарий     Решение

Задача 77919

Темы:   [ Четырехугольник (неравенства) ]
[ Неравенства с углами ]
Сложность: 3
Классы: 8,9

У выпуклых четырёхугольников ABCD и A'B'C'D' соответственные стороны равны. Доказать, что если $ \angle$A > $ \angle$A', то $ \angle$B < $ \angle$B', $ \angle$C > $ \angle$C' и $ \angle$D < $ \angle$D'.
Прислать комментарий     Решение


Задача 77920

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Что больше     или ?

Прислать комментарий     Решение

Задача 77921

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что из четырёх полученных отрезков можно сложить четырёхугольник, вписанный (Разрешается, чтобы вершины четырёхугольника лежали не только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту трапецию.
Прислать комментарий     Решение


Задача 77923

Тема:   [ Многоугольники (экстремальные свойства) ]
Сложность: 3
Классы: 10,11

Из всех выпуклых многоугольников, у которых одна сторона равна a и сумма внешних углов при вершинах, не прилегающих к этой стороне, равна 120o, выбрать многоугольник наибольшей площади.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .