ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В каждой комнате особняка стояли букеты цветов. Всего было 30 букетов роз, 20 – гвоздик и 10 – хризантем, причём, в каждой комнате стоял хотя бы один букет. При этом ровно в двух комнатах стояли одновременно и хризантемы, и гвоздики, ровно в трёх комнатах – и хризантемы, и розы, ровно в четырёх комнатах – и гвоздики, и розы. Могло ли в особняке быть 55 комнат?

Вниз   Решение


Малыш и Карлсон съели бочку варенья и корзину печенья, начав и закончив одновременно. Сначала Малыш ел печенье, а Карлсон – варенье, потом (в какой-то момент) они поменялись. Карлсон и варенье, и печенье ел в три раза быстрее Малыша. Какую часть варенья съел Карлсон, если печенья они съели поровну?

ВверхВниз   Решение


Разделить  a128b128  на  (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).

ВверхВниз   Решение


F – выпуклая фигура с двумя взаимно перпендикулярными осями симметрии. Через точку M, лежащую внутри фигуры и отстоящую от осей на расстояния a и b, провели прямые, параллельные осям. Эти прямые делят F на четыре области. Найдите разность между суммой площадей большей и меньшей из областей и суммой площадей двух других.

ВверхВниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 76501

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Разделить  a128b128  на  (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).

Прислать комментарий     Решение


Задача 76506

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 10,11

Разделить  a2kb2k  на  (a + b)(a² + b²)(a4 + b4)...(a2k–1 + b2k–1).

Прислать комментарий     Решение

Задача 76503

Тема:   [ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Двузначное число в сумме с числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти все такие числа.
Прислать комментарий     Решение


Задача 76514

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3-
Классы: 8,9,10,11

Решить в целых числах уравнение  xy + 3x – 5y = – 3.

Прислать комментарий     Решение

Задача 76502

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Доказать, что при любом целом положительном n сумма     больше ½.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .