ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

По двум скрещивающимся прямым скользят два отрезка. Доказать, что объём тетраэдра с вершинами в концах этих отрезков не зависит от положения последних.

Вниз   Решение


Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы три проведённые окружности имели в точках пересечения взаимно перпендикулярные касательные.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 76440

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

Решить систему:
   x + y + z = a,
   x
² + y² + z² = a²,
   x³ + y³ + z³ = a³.

Прислать комментарий     Решение

Задача 76441

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Даны прямая и две точки A и B по одну сторону от неё. Найти на прямой такую точку M, чтобы сумма MA + MB равнялась заданному отрезку.
Прислать комментарий     Решение


Задача 76442

Тема:   [ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

По двум скрещивающимся прямым скользят два отрезка. Доказать, что объём тетраэдра с вершинами в концах этих отрезков не зависит от положения последних.
Прислать комментарий     Решение


Задача 76443

Темы:   [ Окружности (построения) ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 8,9

Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы три проведённые окружности имели в точках пересечения взаимно перпендикулярные касательные.

Прислать комментарий     Решение

Задача 76445

Темы:   [ Разные задачи на разрезания ]
[ Сочетания и размещения ]
[ Многоугольники (прочее) ]
Сложность: 4
Классы: 8,9

На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .