ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан выпуклый четырёхугольник ABCD с попарно непараллельными сторонами. На стороне AD выбирается произвольная точка P, отличная от A и D. Описанные окружности треугольников ABP и CDP вторично пересекаются в точке Q. Докажите, что прямая PQ проходит через фиксированную точку, не зависящую от выбора точки P.

Вниз   Решение


Квадратный лист бумаги разрезали по прямой на две части. Одну из полученных частей снова разрезали на две части, и так много раз. Какое наименьшее число разрезов необходимо, чтобы среди полученных частей могло оказаться ровно 100 двадцатиугольников?

ВверхВниз   Решение


В массиве a[1]...a[n] встречаются по одному разу все целые числа от 0 до n, кроме одного. Найти пропущенное число за время порядка n и с конечной дополнительной памятью.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 76265  (#1.2.34)

Тема:   [ Одномерные массивы ]
Сложность: 2

Дан массив a[1..n] и число m≤n. Для каждого участка из m стоящих рядом членов (таких участков, очевидно, n - m + 1) вычислить его сумму. Общее число действий должно быть порядка n.
Прислать комментарий     Решение


Задача 76266  (#1.2.35)

Тема:   [ Многомерные массивы ]
Сложность: 2+

Дана квадратная таблица a[1..n][1..n] и число m≤n. Для каждого квадрата m×m в этой таблице вычислить сумму стоящих в нём чисел. Общее число действий порядка n2.
Прислать комментарий     Решение


Задача 76267  (#1.2.36)

Тема:   [ Одномерные массивы ]
Сложность: 2

В массиве a[1]...a[n] встречаются по одному разу все целые числа от 0 до n, кроме одного. Найти пропущенное число за время порядка n и с конечной дополнительной памятью.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .