|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны n карточек; на обеих сторонах каждой карточки написано по одному из чисел 1, 2,..., n, причём так, что каждое число встречается на всех n карточках ровно два раза. Доказать, что карточки можно разложить на столе так, что сверху окажутся все числа: 1, 2,..., n. На шести ёлках сидят шесть чижей, на каждой ёлке – по чижу. Ёлки растут в ряд с интервалами в 10 метров. Если какой-то чиж перелетает с одной ёлки на другую, то какой-то другой чиж обязательно перелетает на столько же метров, но в
обратном направлении. Замените буквы цифрами в ребусе Г + О = Л – О = В × О = Л – О = М – К = А так, чтобы все равенства стали верными; при этом одинаковым буквам должны соответствовать одинаковые цифры, а различным – различные. Найдите все решения ребуса. Даны два возрастающих массива x: array[1..k] of integer и y: array[1..l] of integer. Найти количество общих элементов в этих массивах, то есть количество тех целых t, для которых t = x[i] = y[j] для некоторых i и j. (Число действий порядка k + l.) |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
|||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|