|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные расстояния между которыми все больше 1. Ваня задумал два положительных числа x и y. Он записал числа x + y, x – y, xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y. Дан вписанный четырехугольник $ABCD$. Прямые $AB$ и $DC$ пересекаются в точке $E$, а прямые $BC$ и $AD$ — в точке $F$. В треугольнике $AED$ отмечен центр вписанной окружности $I$, а из точки $F$ проведен луч, перпендикулярный биссектрисе угла $AID$. В каком отношении этот луч делит угол $AFB$? Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами? Многоугольник разрезан на несколько многоугольников. Пусть p — количество полученных многоугольников, q — количество отрезков, являющихся их сторонами, r — количество точек, являющихся их вершинами. Докажите, что p - q + r = 1. Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться |
Страница: 1 [Всего задач: 5]
Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$.
Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться
У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?
Назовём девятизначное число красивым, если все его цифры различны.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|