|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение? Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой. Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство Предложите способ измерения диагонали обычного кирпича, который легко реализуется на практике (без теоремы Пифагора). Вася постоял некоторое время на остановке. За это время проехал один автобус и два трамвая. Через некоторое время на эту же остановку пришёл Шпион. Пока он там сидел, проехало 10 автобусов. Какое минимальное число трамваев могло проехать за это время? И автобусы, и трамваи ходят с равными интервалами, причём автобусы ходят с интервалом 1 час. На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB. |
Страница: 1 [Всего задач: 5]
В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.
Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.
Фиксированы окружность, точка A на ней и точка K вне окружности. Секущая, проходящая через K, пересекает окружность в точках P и Q. Докажите, что ортоцентры треугольников APQ лежат на фиксированной окружности.
На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.
На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|