|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На оси Ox произвольно расположены различные точки X1, ..., Xn, n ≥ 3. Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть y = f1(x), ..., y = fm(x) – соответствующие параболы. Докажите, что парабола y = f1(x) + ... + fm(x) пересекает ось Ox в двух точках. Дана клетчатая доска 10 × 10. За ход разрешается покрыть любые 2 соседние клетки доминошкой (прямоугольником 1 × 2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход. Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве? На рисунке изображен параллелограмм и отмечена точка P пересечения его диагоналей. Проведите через P прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб. Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ. Доказать, что в прямоугольнике площади 1 можно расположить непересекающиеся круги так, чтобы сумма их радиусов была равна 1962. Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника. Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты? В разноцветной семейке было поровну белых, синих и полосатых детей-осьминожков. Когда несколько синих осьминожков стали полосатыми, папа решил посчитать детей. Синих и белых вместе взятых оказалось 10, зато белых и полосатых вместе взятых – 18. Сколько детей в разноцветной семейке? |
Страница: 1 2 3 >> [Всего задач: 12]
В разноцветной семейке было поровну белых, синих и полосатых детей-осьминожков. Когда несколько синих осьминожков стали полосатыми, папа решил посчитать детей. Синих и белых вместе взятых оказалось 10, зато белых и полосатых вместе взятых – 18. Сколько детей в разноцветной семейке?
Паук сплёл паутину, и во все её 12 узелков попалось по мухе или комару. При этом каждое насекомое оказалось соединено отрезком паутины ровно с двумя комарами. Нарисуйте пример, как это могло быть (написав внутри узелков буквы М и К).
Незнайка выписал семь двузначных чисел в порядке возрастания. Затем одинаковые цифры заменил одинаковыми буквами, а разные – разными. Получилось вот что: ХА, АЙ, АХ, ОЙ, ЭМ, ЭЙ, МУ. Докажите, что Незнайка что-то перепутал.
Использовав каждую из цифр от 0 до 9 ровно по разу, запишите 5 ненулевых чисел так, чтобы каждое делилось на предыдущее.
Автобусная остановка B расположена на прямолинейном шоссе между остановками A и C. Через некоторое время после выезда из A автобус оказался в такой точке шоссе, что расстояние от неё до одной из трёх остановок равно сумме расстояний до двух других. Ещё через такое же время автобус снова оказался в точке с таким свойством, а ещё через 25 минут доехал до B. Сколько времени требуется автобусу на весь путь от A до C, если его скорость постоянна, а на остановке B он стоит 5 минут?
Страница: 1 2 3 >> [Всего задач: 12] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|