ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Существуют ли такие простые числа p1, p2, ..., p2007, что    делится на p2,    делится на p3, ...,    делится на p1?

Вниз   Решение


Докажите, что окружность, построенная на стороне AB треугольника ABC как на диаметре, касается его вписанной окружности тогда и только тогда, когда сторона AB равна радиусу вневписанной окружности, касающейся этой стороны.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 66135

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC отмечена точка K так, что  AB = CK.  Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что  KN = KP.

Прислать комментарий     Решение

Задача 66136

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Перпендикулярные прямые ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Докажите, что прямая O1O2 перпендикулярна BC.

Прислать комментарий     Решение

Задача 66138

Темы:   [ Вписанные и описанные окружности ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Неравенство треугольника (прочее) ]
[ Связь величины угла с длиной дуги и хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

Прислать комментарий     Решение

Задача 66141

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Медиана, проведенная к гипотенузе ]
[ Угол между касательной и хордой ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9,10

Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов.

Прислать комментарий     Решение

Задача 66144

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что окружность, построенная на стороне AB треугольника ABC как на диаметре, касается его вписанной окружности тогда и только тогда, когда сторона AB равна радиусу вневписанной окружности, касающейся этой стороны.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .