ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Кацыло П.

В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где  n > 3)?

Вниз   Решение


Максимальное время работы на одном тесте: 1 секунда

После того, как к удивлению тетушки Полли, ее забор был покрашен, она поручила Тому Сойеру обновить краску на плитках, которыми был вымощен их квадратный двор. Двор был покрыт N´ N одинаковыми квадратными плитками, каждая из которых когда-то давно была покрашена в один из K цветов (K < N). Краска на плитках потускнела и Тому Сойеру поручили их покрасить, на этот раз в один любой цвет (из тех же К цветов). Покрасить нужно все плитки, в том числе и те, которые уже были покрашены в этот цвет раньше.

Окунув кисть в ведро с краской один раз, можно перекрасить один горизонтальный или вертикальный ряд плиток. Чтобы разнообразить свою работу, Том придумал, что ряд плиток можно красить только цветом, которым на данный момент уже покрашены (старой или новой краской) по крайней мере две плитки выбранного ряда (вертикального или горизонтального). За один раз Том собирается красить допустимым цветом весь ряд целиком, независимо от того, были ли уже перекрашены какие-либо его плитки ранее. Помогите Тому определить, какое минимальное число раз ему придется обмакнуть кисть, чтобы перекрасить все плитки, следуя придуманным правилам, и в какой цвет окажутся окрашены все плитки.

Формат входных данных

В первой строке входного файла b.in записаны через пробел два числа: N - количество плиток в одном ряду (1 < N ≤ 200) и K (1 ≤ K < N). В каждой из следующих N строк записаны N натуральных чисел, обозначающих номера цветов красок, в которые когда-то были выкрашены соответствующие плитки данного горизонтального ряда. Номера цветов - натуральные числа в диапазоне от 1 до K.

Формат выходных данных

В выходной файл b.out выведите два числа: L - какое минимальное число раз придется окунать кисть в ведро с краской, и номер краски С, в которую в результате окажутся перекрашены все плитки двора. Если таких красок может быть несколько, то выведите номер любой из них.

Если перекрасить все плитки, следуя придуманным Томом правилам, нельзя, выведите два раза число 0.

Примеры

b.in

b.out

3 2

1 2 1

2 1 1

1 2 2

4 1

2 1

1 1

1 1

2 1

ВверхВниз   Решение


На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

ВверхВниз   Решение


Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные расстояния между которыми все больше 1.

ВверхВниз   Решение


Автор: Фольклор

Можно ли разрезать равносторонний треугольник на три равных девятиугольника?

ВверхВниз   Решение


Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что из четырёх полученных отрезков можно сложить четырёхугольник, вписанный (Разрешается, чтобы вершины четырёхугольника лежали не только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту трапецию.

ВверхВниз   Решение


Можно ли число 1/10 представить в виде произведения десяти положительных правильных дробей?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 65665  (#1)

Темы:   [ Обыкновенные дроби ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Можно ли число 1/10 представить в виде произведения десяти положительных правильных дробей?

Прислать комментарий     Решение

Задача 65678  (#2)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Свойства симметрий и осей симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9,10,11

Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

Прислать комментарий     Решение

Задача 65679  (#3)

Темы:   [ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Уравнение с целыми коэффициентами  x4 + ax³ + bx² + cx + d = 0  имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.

Прислать комментарий     Решение

Задача 65680  (#4)

Темы:   [ Шахматная раскраска ]
[ Числа Фибоначчи ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Бесконечную клетчатую доску раскрасили шахматным образом, и в каждую белую клетку вписали по отличному от нуля целому числу. После этого для каждой чёрной клетки посчитали разность: произведение того, что написано в соседних по горизонтали клетках, минус произведение того, что написано в соседних по вертикали. Могут ли все такие разности равняться 1?

Прислать комментарий     Решение

Задача 65681  (#5)

Темы:   [ Куб ]
[ Примеры и контрпримеры. Конструкции ]
[ Сфера, вписанная в трехгранный угол ]
[ Проектирование помогает решить задачу ]
[ Малые шевеления ]
Сложность: 4+
Классы: 9,10,11

В куб с ребром 1 поместили 8 непересекающихся шаров (возможно, разного размера). Может ли сумма диаметров этих шаров быть больше 4?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .