ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На плоскости дано n точек, причем из любой четверки этих точек можно выбросить одну точку так, что оставшиеся точки будут лежать на одной прямой. Докажите, что из данных точек можно выбросить одну точку так, что все оставшиеся точки будут лежать на одной прямой.

Вниз   Решение


Автор: Фольклор

Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если  OD = OE,  то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.

ВверхВниз   Решение


Аня, Боря и Вася составляли слова из заданных букв. Все составили разное число слов: больше всех – Аня, меньше всех – Вася. Затем ребята просуммировали очки за свои слова. Если слово есть у двух игроков, за него даётся 1 очко, у одного игрока – 2 очка, слова, общие у всех трёх игроков, вычёркиваются. Могло ли так случиться, что больше всех очков набрал Вася, а меньше всех – Аня?

ВверхВниз   Решение


Числа a1, a2, ..., a1985 представляют собой переставленные в некотором порядке числа 1, 2, ..., 1985. Каждое число ak умножается на его номер k, а затем среди полученных 1985 произведений выбирается наибольшее. Доказать, что оно не меньше, чем 993².

ВверхВниз   Решение


В наборе  –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5  замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 65328

Тема:   [ Теория множеств (прочее) ]
Сложность: 2
Классы: 8,9,10,11

Аня ждёт автобус. Какое событие имеет наибольшую вероятность?
  А = {Аня ждёт автобус не меньше минуты},
  В = {Аня ждёт автобус не меньше двух минут},
  С = {Аня ждёт автобус не меньше пяти минут}.

Прислать комментарий     Решение

Задача 65331

Тема:   [ Дискретное распределение ]
Сложность: 2+
Классы: 8,9,10,11

Вася написал на листке бумаги записку, сложил её вчетверо, надписал сверху "МАМЕ" (см. фото). Затем он развернул записку, дописал ещё кое-что, опять сложил записку по линиям сгиба случайным образом (не обязательно, как раньше) и оставил на столе, положив случайной стороной вверх. Найдите вероятность того, что надпись "МАМЕ" по-прежнему сверху.

Прислать комментарий     Решение

Задача 65329

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3-
Классы: 8,9,10,11

2012 правильных игральных костей (кубиков) составили в ряд таким образом, что каждые две соседние кости прилегают друг другу одинаковыми гранями (принцип домино). В остальном положение костей случайное. Найдите сумму очков, которые оказались на поверхности получившейся фигуры.

Прислать комментарий     Решение

Задача 65330

Темы:   [ Математическая статистика ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 8,9,10,11

В наборе  –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5  замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились.

Прислать комментарий     Решение

Задача 65332

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
Сложность: 3+
Классы: 8,9,10,11

У Алисы в кармане шесть волшебных пирожков – два увеличивающих (съешь – вырастешь), а остальные уменьшающие (съешь – уменьшишься). Когда Алиса встретила Мэри Энн, она, не глядя, вынула из кармана три пирожка и отдала их Мэри. Найдите вероятность того, что у одной из девочек нет ни одного увеличивающего пирожка.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .