|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
Петя и Вася нашли на чердаке остатки рыболовной сети своего деда. Часть веревок давно сгнила, и сеть распалась на большое число кусков, каждый из которых состоит не более чем из 50 веревочек единичной длины. Так как использовать по назначению остатки данной сети было уже нельзя, братья разложили один из найденных кусков на прямоугольном столе так, что веревочки оказались параллельны сторонам стола, и стали играть в следующую игру. Братья делают ходы по очереди, Петя ходит первым. Своим ходом игрок находит веревочку, являющуюся стороной некоторой целой единичной квадратной ячейки сети (все четыре образующие ее веревочки целы), и перерезает выбранную веревочку. Проигрывает тот из братьев, который не может сделать очередной ход. Требуется написать программу, которая по описанию куска сети на столе определяет, может ли Петя выиграть при любой игре Васи, и если да, то какой первый ход он должен для этого сделать. Формат входных данных В первой строке входного файла задано число N (1 ≤ N ≤ 50) - количество веревочек единичной длины, из которых состоит кусок сети. Следующие N строк входного файла содержат по две пары целых чисел - координаты концов веревочек. Каждая четверка чисел описывает отрезок единичной длины, параллельный одной из осей координат. Координаты всех точек неотрицательны и не превосходят 50. Формат выходных данных Первая строка выходного файла должна содержать число 1, если Петя может выиграть при любой игре Васи, и число 2, если нет. В случае выигрыша Пети вторая строка должна содержать номер веревочки, которую он должен перерезать первым ходом. Если возможных выигрышных ходов несколько, выведите любой. Веревочки пронумерованы, начиная с 1, в том порядке, в котором они заданы во входном файле. Примечание Максимальная оценка за решение задачи при N ≤ 13 равна 40 баллам. Пример
На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что AF < BD. |
Страница: 1 2 >> [Всего задач: 6]
В треугольнике ABC высота AH проходит через середину медианы BM.
Квадрат ABCD и равносторонний треугольник MKL расположены так, как это показано на рисунке. Найдите угол PQD.
В треугольнике ABC на сторонах AC, BC и AB отметили точки D, E и F соответственно, так, что AD = AB, EC = DC, BF = BE. После этого стёрли всё, кроме точек E, F и D. Восстановите треугольник ABC.
В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN.
На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что AF < BD.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|