ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите расстояние от точки M0(x0;y0;z0) до плоскости Ax+By+Cz+D=0 .

Вниз   Решение


У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?

ВверхВниз   Решение


Автор: Фольклор

Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что  f(1) + f(2) = 10  и    при любых а и b. Найдите f(22011).

ВверхВниз   Решение


Даны 1002 различных числа, не превосходящих 2000. Докажите, что из них можно выбрать три таких числа, что сумма двух из них равна третьему. Останется ли это утверждение справедливым, если число 1002 заменить на 1001?

ВверхВниз   Решение


Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя.

ВверхВниз   Решение


Коля Васин выписал пример на умножение, а затем заменил все цифры буквами: одинаковые цифры одинаковыми буквами, а разные – разными. Получилось равенство  ab·cd = effe.  Не ошибся ли Коля?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 60805  (#04.179)

Тема:   [ Признаки делимости на 11 ]
Сложность: 3+
Классы: 7,8,9

Коля Васин выписал пример на умножение, а затем заменил все цифры буквами: одинаковые цифры одинаковыми буквами, а разные – разными. Получилось равенство  ab·cd = effe.  Не ошибся ли Коля?

Прислать комментарий     Решение

Задача 60806  (#04.180)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в записи числа 230 есть по крайней мере две одинаковые цифры, не вычисляя его.

Прислать комментарий     Решение

Задача 97987  (#04.181)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?

Прислать комментарий     Решение

Задача 60808  (#04.182)

 [Признак делимости на 19]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Существует следующий способ проверить, делится ли данное число N на 19:
  1) отбрасываем последнюю цифру у числа N;
  2) прибавляем к полученному числу произведение отброшенной цифры на 2;
  3) с полученным числом проделываем операции 1) и 2) до тех пор, пока не останется число, меньшее или равное 19.
  4) если остается 19, то 19 делится на N, в противном случае N не делится на 19.
Докажите справедливость этого признака делимости.

Прислать комментарий     Решение

Задача 60809  (#04.183)

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 8,9,10

Аналогичные указанному в задаче 60808 признаки делимости существуют и для всех чисел вида  10n ± 1  и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .