|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдите расстояние от точки M0(x0;y0;z0) до плоскости Ax+By+Cz+D=0 . У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно? Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и Даны 1002 различных числа, не превосходящих 2000. Докажите, что из них можно выбрать три таких числа, что сумма двух из них равна третьему. Останется ли это утверждение справедливым, если число 1002 заменить на 1001? Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя. Коля Васин выписал пример на умножение, а затем заменил все цифры буквами: одинаковые цифры одинаковыми буквами, а разные – разными. Получилось равенство ab·cd = effe. Не ошибся ли Коля? |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Коля Васин выписал пример на умножение, а затем заменил все цифры буквами: одинаковые цифры одинаковыми буквами, а разные – разными. Получилось равенство ab·cd = effe. Не ошибся ли Коля?
Докажите, что в записи числа 230 есть по крайней мере две одинаковые цифры, не вычисляя его.
Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?
Существует следующий способ проверить, делится ли данное число N на
19:
Аналогичные указанному в задаче 60808 признаки делимости существуют и для всех чисел вида 10n ± 1 и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|