ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

На клетчатой бумаге нарисован квадрат 7×7. Покажите, как разрезать его по линиям сетки на шесть частей и сложить из них три квадрата.

Вниз   Решение


Автор: Фольклор

В классе – 17 человек. Известно, что среди любых десяти есть хотя бы одна девочка, а мальчиков больше, чем девочек. Сколько девочек в этом классе?

ВверхВниз   Решение


Автор: Фольклор

На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?

ВверхВниз   Решение


Автор: Фольклор

Ваня пошел с папой в тир. Уговор был такой: Ване даются 10 патронов, и за каждое попадание в цель он получает ещё три патрона. Ваня сделал 14 выстрелов и ровно в половине из них он попал в цель. Сколько патронов осталось у Вани?

ВверхВниз   Решение


Автор: Фольклор

Известно, что числа а, b, c и d – целые и  .  Может ли выполняться равенство  аbcd = 2012?

ВверхВниз   Решение


Сколько решений имеет уравнение  x1 + x2 + x3 = 1000
  а) в натуральных;   б) в целых неотрицательных числах?

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 110]      



Задача 60401  (#02.067)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

При игре в преферанс каждому из трёх игроков раздают по 10 карт, а две карты кладут в прикуп. Сколько различных раскладов возможно в этой игре? (Считаются возможные раздачи без учета того, что каждые 10 карт достаются конкретному игроку.)

Прислать комментарий     Решение

Задача 60402  (#02.068)

Темы:   [ Сочетания и размещения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9,10

Сколько существует шестизначных чисел, у которых каждая последующая цифра меньше предыдущей?

Прислать комментарий     Решение

Задача 60403  (#02.069)

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 3-
Классы: 9,10


Имеется m белых и n чёрных шаров, причём  m > n.
Сколькими способами можно все шары разложить в ряд так, чтобы никакие два чёрных шара не лежали рядом?

Прислать комментарий     Решение

Задача 30717  (#2.70, 2.71)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Шесть ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров
  а) так, чтобы ни один ящик не оказался пустым?
  б) если некоторые ящики могут оказаться пустыми)?

Прислать комментарий     Решение

Задача 60406  (#02.072)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 9,10

Сколько решений имеет уравнение  x1 + x2 + x3 = 1000
  а) в натуральных;   б) в целых неотрицательных числах?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .