ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?
(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

Вниз   Решение


Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Сколько существует четырёхзначных "симпатичных" чисел?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



Задача 60345  (#02.011)

Темы:   [ Правило произведения ]
[ Формула включения-исключения ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Пассажир оставил вещи в автоматической камере хранения, а когда пришёл получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру?

Прислать комментарий     Решение

Задача 60346  (#02.012)

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево (например, таких как 54345, 17071)?

Прислать комментарий     Решение

Задача 60347  (#02.013)

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8

Сколько существует девятизначных чисел, сумма цифр которых чётна?

Прислать комментарий     Решение

Задача 60348  (#02.014)

Темы:   [ Правило произведения ]
[ Раскладки и разбиения ]
Сложность: 2
Классы: 7,8,9

Сколькими способами можно разложить семь монет различного достоинства по трём карманам?

Прислать комментарий     Решение

Задача 60349  (#02.015)

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7,8

Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Сколько существует четырёхзначных "симпатичных" чисел?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .