ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Вниз   Решение


Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.

ВверхВниз   Решение


На плоскости дано n$ \ge$3 точек. Пусть d — наибольшее расстояние между парами этих точек. Докажите, что имеется не более n пар точек, расстояние между которыми равно d.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 58284  (#26.001)

Тема:   [ Системы точек ]
Сложность: 3
Классы: 8,9

а) Архитектор хочет расположить четыре высотных здания так, что, гуляя по городу, можно увидеть их шпили в произвольном порядке (т. е. для любого набора номеров зданий i, j, k, l можно стоя в некоторой точке и поворачиваясь в направлении к пок или к противк часовой стрелки, увидеть сначала шпиль здания i, затем j, k, l). Удастся ли ему это сделать?
б) Тот же вопрос для пяти зданий.
Прислать комментарий     Решение


Задача 58285  (#26.002)

Тема:   [ Системы точек ]
Сложность: 4
Классы: 8,9

На плоскости дано n точек, причем из любой четверки этих точек можно выбросить одну точку так, что оставшиеся точки будут лежать на одной прямой. Докажите, что из данных точек можно выбросить одну точку так, что все оставшиеся точки будут лежать на одной прямой.
Прислать комментарий     Решение


Задача 58286  (#26.003)

Тема:   [ Системы точек ]
Сложность: 4+
Классы: 8,9

На плоскости дано 400 точек. Докажите, что различных расстояний между ними не менее 15.
Прислать комментарий     Решение


Задача 58287  (#26.004)

Тема:   [ Системы точек ]
Сложность: 5+
Классы: 8,9

На плоскости дано n$ \ge$3 точек. Пусть d — наибольшее расстояние между парами этих точек. Докажите, что имеется не более n пар точек, расстояние между которыми равно d.
Прислать комментарий     Решение


Задача 58288  (#26.005)

Тема:   [ Системы точек ]
Сложность: 5+
Классы: 8,9

На плоскости дано 4000 точек, никакие три из которых не лежат на одной прямой. Докажите, что существует 1000 непересекающихся четырехугольников (возможно, невыпуклых) с вершинами в этих точках.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .