ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Четырёхугольник с длинами сторон 1, 1, 1 и 2 имеет две параллельные стороны и разбит на четыре одинаковые фигуры (см. рисунок). В результате верхняя сторона разделилась на четыре отрезка. Найдите отношение длины большего отрезка к меньшему.

Вниз   Решение


Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников.

ВверхВниз   Решение


Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

ВверхВниз   Решение


По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.

ВверхВниз   Решение


Точки A, B, C и D таковы, что для любой точки M числа ($ \overrightarrow{MA}$,$ \overrightarrow{MB}$) и  ($ \overrightarrow{MC}$,$ \overrightarrow{MD}$) различны. Докажите, что $ \overrightarrow{AC}$ = $ \overrightarrow{DB}$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 57696  (#13.014)

Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Пусть a1,...,an — векторы сторон n-угольника, $ \varphi_{ij}^{}$ = $ \angle$(ai,aj). Докажите, что a12 = a22 +...+ an2 + 2$ \sum\limits_{i>j>1}^{}$aiajcos$ \varphi_{ij}^{}$, где ai = |ai|.
Прислать комментарий     Решение


Задача 57697  (#13.015)

 [Теорема Гаусса]
Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Дан четырехугольник ABCD. Пусть u = AD2, v = BD2, w = CD2, U = BD2 + CD2 - BC2, V = AD2 + CD2 - AC2, W = AD2 + BD2 - AB2. Докажите, что uU2 + vV2 + wW2 = UVW + 4uvw.
Прислать комментарий     Решение


Задача 57698  (#13.016)

Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Точки A, B, C и D таковы, что для любой точки M числа ($ \overrightarrow{MA}$,$ \overrightarrow{MB}$) и  ($ \overrightarrow{MC}$,$ \overrightarrow{MD}$) различны. Докажите, что $ \overrightarrow{AC}$ = $ \overrightarrow{DB}$.
Прислать комментарий     Решение


Задача 57699  (#13.017)

Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 5
Классы: 9

Докажите, что в выпуклом k-угольнике сумма расстояний от любой внутренней точки до сторон постоянна тогда и только тогда, когда сумма векторов единичных внешних нормалей равна нулю.
Прислать комментарий     Решение


Задача 57700  (#13.018)

Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 5+
Классы: 9

В выпуклом четырехугольнике сумма расстояний от вершины до сторон одна и та же для всех вершин. Докажите, что этот четырехугольник является параллелограммом.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .