ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Окружность пересекает стороны BC, CA, AB треугольника ABC в точках A1 и A2, B1 и B2, C1 и C2 соответственно. Докажите, что если перпендикуляры к сторонам треугольника, проведенные через точки A1, B1 и C1, пересекаются в одной точке, то и перпендикуляры к сторонам, проведенные через A2, B2 и C2, тоже пересекаются в одной точке.

Вниз   Решение


Окружности S1 и S2 радиуса 1 касаются в точке A; центр O окружности S радиуса 2 принадлежит S1. Окружность S1 касается S в точке B. Докажите, что прямая AB проходит через точку пересечения окружностей S2 и S.

ВверхВниз   Решение


Постройте треугольник ABC, если дана прямая l, на которой лежит сторона AB, и точки A1, B1 — основания высот, опущенных на стороны BC и AC.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]      



Задача 57220  (#08.026)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5+
Классы: 8,9

Потроить треугольник по $ \angle$A, высоте к стороне a ha и полупериметру p.
Прислать комментарий     Решение


Задача 57221  (#08.027)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Постройте треугольник ABC, если дана прямая l, на которой лежит сторона AB, и точки A1, B1 — основания высот, опущенных на стороны BC и AC.
Прислать комментарий     Решение


Задача 57222  (#08.028)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Постройте равнобедренный треугольник, если заданы основания его биссектрис.
Прислать комментарий     Решение


Задача 57223  (#08.029)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 8,9

а) Постройте треугольник ABC, зная три точки A', B', C', в которых биссектрисы его углов пересекают описанную окружность (оба треугольника остроугольные).
б) Постройте треугольник ABC, зная три точки A', B', C', в которых высоты треугольника пересекают описанную окружность (оба треугольника остроугольные).
Прислать комментарий     Решение


Задача 57224  (#08.030)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 8,9

Постройте треугольник ABC, зная три точки A', B', C', симметричные центру O описанной окружности этого треугольника относительно сторон BC, CA, AB.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .