Версия для печати
Убрать все задачи
Окружность пересекает стороны
BC,
CA,
AB треугольника
ABC
в точках
A1 и
A2,
B1 и
B2,
C1 и
C2 соответственно.
Докажите, что если перпендикуляры к сторонам треугольника, проведенные
через точки
A1,
B1 и
C1, пересекаются в одной точке, то и перпендикуляры к сторонам, проведенные через
A2,
B2 и
C2,
тоже пересекаются в одной точке.

Решение
Окружности
S1 и
S2 радиуса 1 касаются в точке
A;
центр
O окружности
S радиуса 2 принадлежит
S1.
Окружность
S1 касается
S в точке
B. Докажите, что прямая
AB проходит через точку пересечения окружностей
S2 и
S.


Решение
Постройте треугольник
ABC, если дана прямая
l,
на которой лежит сторона
AB, и точки
A1,
B1 — основания
высот, опущенных на стороны
BC и
AC.

Решение