ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Решите систему уравнений:
    1 – x1x2 = 0,
    1 – x2x3 = 0,
    ...
    1 – x2000x2001 = 0,
    1 – x2001x1 = 0.

Вниз   Решение


Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

ВверхВниз   Решение


Два шара касаются плоскости α в точках A и B и расположены по разные стороны от этой плоскости. Расстояние между центрами этих шаров равно 10. Третий шар внешним образом касается двух данных шаров, а его центр O лежит в плоскости α . Известно, что AO = OB = 2 , AB = 8 . Найдите радиус третьего шара.

ВверхВниз   Решение


Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что  MK = KN.

ВверхВниз   Решение


Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.

ВверхВниз   Решение


Проведите через данную точку P, лежащую внутри данной окружности, хорду так, чтобы разность длин отрезков, на которые P делит хорду, имела данную величину a.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



Задача 57195  (#08.001)

Тема:   [ Метод ГМТ ]
Сложность: 3
Классы: 8,9

Постройте треугольник ABC по a, ha и R.
Прислать комментарий     Решение


Задача 57196  (#08.002)

Тема:   [ Метод ГМТ ]
Сложность: 3
Классы: 8,9

Постройте точку M внутри данного треугольника так, что SABM : SBCM : SACM = 1 : 2 : 3.
Прислать комментарий     Решение


Задача 57197  (#08.003)

Тема:   [ Метод ГМТ ]
Сложность: 3
Классы: 8,9

Проведите через данную точку P, лежащую внутри данной окружности, хорду так, чтобы разность длин отрезков, на которые P делит хорду, имела данную величину a.
Прислать комментарий     Решение


Задача 57198  (#08.004)

Тема:   [ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Даны прямая и окружность. Постройте окружность данного радиуса r, касающуюся их.
Прислать комментарий     Решение


Задача 57199  (#08.005)

Тема:   [ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Даны точка A и окружность S. Проведите через точку A прямую так, чтобы хорда, высекаемая окружностью S на этой прямой, имела данную длину d.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .