ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.)

Вниз   Решение


Автор: Назаров Ф.

На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)

ВверхВниз   Решение


На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?

ВверхВниз   Решение


Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57066

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9

Число сторон многоугольника A1...An нечётно. Докажите, что:
  а) если этот многоугольник вписанный и все его углы равны, то он правильный;
  б) если этот многоугольник описанный и все его стороны равны, то он правильный.

Прислать комментарий     Решение

Задача 57070

Тема:   [ Правильные многоугольники ]
Сложность: 3
Классы: 9

Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей?

Прислать комментарий     Решение

Задача 57079

Темы:   [ Правильные многоугольники ]
[ Неравенства с векторами ]
[ Центр масс ]
Сложность: 3
Классы: 9

Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

Прислать комментарий     Решение

Задача 57080

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Момент инерции ]
Сложность: 3
Классы: 9

Правильный многоугольник  A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Докажите, что   A1X² + ... + AnX² = n(R² + d²),  где  d = OX.

Прислать комментарий     Решение

Задача 57067

Темы:   [ Правильные многоугольники ]
[ Признаки подобия ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 9

Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .