|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Верно ли, что в любом треугольнике точка пересечения медиан лежит внутри треугольника, образованного основаниями биссектрис? Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей? |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Число сторон многоугольника A1...An нечётно. Докажите, что:
Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей?
Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть a =
Правильный многоугольник A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Страница: 1 2 3 4 5 >> [Всего задач: 24] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|