ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

"То" да "это", да половина "того" да "этого" – сколько это будет процентов от трёх четвертей "того" да "этого"?

Вниз   Решение


Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней. Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень?

ВверхВниз   Решение


Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57066

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9

Число сторон многоугольника A1...An нечётно. Докажите, что:
  а) если этот многоугольник вписанный и все его углы равны, то он правильный;
  б) если этот многоугольник описанный и все его стороны равны, то он правильный.

Прислать комментарий     Решение

Задача 57070

Тема:   [ Правильные многоугольники ]
Сложность: 3
Классы: 9

Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей?

Прислать комментарий     Решение

Задача 57079

Темы:   [ Правильные многоугольники ]
[ Неравенства с векторами ]
[ Центр масс ]
Сложность: 3
Классы: 9

Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

Прислать комментарий     Решение

Задача 57080

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Момент инерции ]
Сложность: 3
Классы: 9

Правильный многоугольник  A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Докажите, что   A1X² + ... + AnX² = n(R² + d²),  где  d = OX.

Прислать комментарий     Решение

Задача 57067

Темы:   [ Правильные многоугольники ]
[ Признаки подобия ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 9

Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .