|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.
а) Докажите, что если угол A треугольника ABC равен 120o, то центр описанной окружности и ортоцентр симметричны относительно биссектрисы внешнего угла A. б) В треугольнике ABC угол A равен 60o; O — центр описанной окружности, H — ортоцентр, I — центр вписанной окружности, а Ia — центр вневписанной окружности, касающейся стороны BC. Докажите, что IO = IH и IaO = IaH. |
Страница: 1 2 >> [Всего задач: 7]
Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.
б) В треугольнике ABC угол A равен 60o; O — центр описанной окружности, H — ортоцентр, I — центр вписанной окружности, а Ia — центр вневписанной окружности, касающейся стороны BC. Докажите, что IO = IH и IaO = IaH.
Страница: 1 2 >> [Всего задач: 7] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|