|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Книги/журналы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Один путник шел первые полпути со скоростью 4 км/ч, а вторые полпути со скоростью 6 км/ч. Другой путник шел первую половину времени со скоростью со скоростью 4км/ч, а вторую половину времени со скоростью 6 км/ч. С какой постоянной скоростью должен был бы идти каждый из них, чтобы затратить на свое путешествие то же самое время? На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга.
Затем каждую ладью передвинули ходом коня. В остроугольном треугольнике $ABC$ высоты $AH_A$, $BH_B$ и $CH_C$ пересекаются в точке $H$. Через точки, в которых окружность радиуса $HH_A$ с центром $H$ пересекает отрезки $BH$ и $CH$, проведена прямая $\ell_A$. Аналогично проведены прямые $\ell_B$ и $\ell_C$. Докажите, что точка пересечения высот треугольника, образованного прямыми $\ell_A$, $\ell_B$, $\ell_C$, совпадает с центром окружности, вписанной в треугольник $ABC$. Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что: а) радиус вписанной окружности треугольника равен (a + b - c)/2; б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 4556]
а) радиус вписанной окружности треугольника равен (a + b - c)/2; б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 4556] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|