ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Брагин В.

Вершины правильного 45-угольника раскрашены в три цвета, причём вершин каждого цвета поровну. Докажите, что можно выбрать по три вершины каждого цвета так, чтобы три треугольника, образованные выбранными одноцветными вершинами, были равны.

Вниз   Решение


а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

ВверхВниз   Решение


На доске написаны числа
  а) 1, 2. 3, ..., 1997, 1998;
  б) 1, 2, 3, ..., 1998, 1999;
  в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 33134  (#01)

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

Прислать комментарий     Решение

Задача 33135  (#02)

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.
Прислать комментарий     Решение


Задача 58160  (#03)

Темы:   [ Четность и нечетность ]
[ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

Прислать комментарий     Решение

Задача 30283  (#04)

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 6,7

Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.

Прислать комментарий     Решение

Задача 33138  (#05)

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 6,7,8

На доске написаны числа
  а) 1, 2. 3, ..., 1997, 1998;
  б) 1, 2, 3, ..., 1998, 1999;
  в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .