ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Докажите, что треугольник MNQ – равносторонний.

Вниз   Решение


Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.

ВверхВниз   Решение


При всех значениях параметра a найдите число действительных корней уравнения  x³ – x – a = 0.

ВверхВниз   Решение


Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов.

ВверхВниз   Решение


Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

ВверхВниз   Решение


Найдите самое маленькое k, при котором k! делится на 2040.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 32984  (#01)

Тема:   [ Уравнения в целых числах ]
Сложность: 2+
Классы: 8

Жители города Глупова пользуются купюрами только в 35 и 80 тыров. Сможет ли рассчитаться продавец с покупателем, который хочет купить
  a) шоколадку за 57 тыров;
  б) булочку за 15 тыров?

Прислать комментарий     Решение

Задача 60627  (#02)

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Пусть m и n – целые числа. Докажите, что  mn(m + n)  – чётное число.

Прислать комментарий     Решение

Задача 32986  (#03)

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8,9

Найдите самое маленькое k, при котором k! делится на 2040.

Прислать комментарий     Решение

Задача 32987  (#04)

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 2
Классы: 7,8,9

Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

Прислать комментарий     Решение

Задача 32988  (#05)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3-
Классы: 7,8,9

Делится ли  222555 + 555222  на 7?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .