ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?

Вниз   Решение


В однокруговом турнире участвуют 10 шахматистов. Через какое наименьшее количество туров может оказаться так, что единоличный победитель уже выявился досрочно? (В каждом туре участники разбиваются на пары. Выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0).

ВверхВниз   Решение


Окружность обладает тем свойством, что внутри неё можно двигать правильный треугольник так, чтобы каждая вершина треугольника описывала эту окружность. Найти замкнутую несамопересекающуюся кривую, отличную от окружности, внутри которой также можно двигать правильный треугольник так, чтобы каждая его вершина описывала эту кривую.

ВверхВниз   Решение


Если класс из 30 человек рассадить в зале кинотеатра, то в любом случае хотя бы в одном ряду окажется не менее двух одноклассников. Если то же самое проделать с классом из 26 человек, то по крайней мере три ряда окажутся пустыми. Сколько рядов в зале?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 32020  (#01)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 7,8,9

Цены снижены на 20%. На сколько процентов больше можно купить товаров на ту же зарплату?

Прислать комментарий     Решение

Задача 32021  (#02)

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 3-
Классы: 6,7,8

Если класс из 30 человек рассадить в зале кинотеатра, то в любом случае хотя бы в одном ряду окажется не менее двух одноклассников. Если то же самое проделать с классом из 26 человек, то по крайней мере три ряда окажутся пустыми. Сколько рядов в зале?

Прислать комментарий     Решение

Задача 32022  (#03)

Темы:   [ Обход графов ]
[ Обходы многогранников ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

В одной из вершин  а) октаэдра;  б) куба сидит муха. Может ли она проползти по всем его рёбрам ровно по одному разу и возвратиться в исходную вершину?

Прислать комментарий     Решение

Задача 32023  (#04)

Темы:   [ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8,9

а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.
Прислать комментарий     Решение


Задача 32024  (#05)

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Для того, чтобы застеклить 15 окон различных размеров и форм, заготовлено 15 стекол в точности по окнам (окна такие, что в каждом окне должно быть одно стекло). Стекольщик, не зная, что стекла подобраны, работает так: он подходит к очередному окну и перебирает неиспользованные стекла до тех пор, пока не найдет достаточно большое (то есть либо в точности подходящее, либо такое, из которого можно вырезать подходящее), если же такого стекла нет, то переходит к следующему окну, и так, пока не обойдет все окна. Составлять стекло из нескольких частей нельзя. Какое максимальное число окон может остаться незастекленными?

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .