ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

Вниз   Решение


Автор: Замятин В.

При каком наименьшем n квадрат n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

ВверхВниз   Решение


Новый градоначальник города Глупова решил с целью пополнения бюджета и экономии горючего провести кампанию борьбы с левым уклоном и левыми рейсами. Для этого он запретил водителям выполнять левые повороты, установив штраф за каждый такой поворот в размере одного миллиона (разворот на 180o поворотом налево не считается). От тяжелого прошлого Глупову достались улицы, которые могут пересекаться под любыми углами. Градоначальник приказал установить компьютерную систему тотальной слежки, которая следит за каждым автомобилем, записывая его координаты каждый раз, когда тот меняет направление движения (включая начальную и конечную точки пути).

Требуется написать программу, вычисляющую по записанной последовательности координат автомобиля штраф, который должен быть взыскан с водителя.

Входные данные

В первой строке входного файла содержится целое число N – количество записанных пар координат (1 ≤ N ≤ 1000). В каждой из следующих N строк записана очередная из этих пар.

Выходные данные

Выведите в выходной файл суммарный штраф водителя в миллионах.

Пример входного файла

4
0 0
1 0
1 1
2 1

Пример выходного файла

1

ВверхВниз   Решение


Докажите, что если два противоположных угла четырехугольника тупые, то диагональ, соединяющая вершины этих углов, короче другой диагонали.

ВверхВниз   Решение


Игра начинается с числа 60. За ход разрешается уменьшить имеющееся число на любой из его делителей. Проигрывает тот, кто получит ноль.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 30458  (#026)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4-
Классы: 8,9

В коробке лежит 300 спичек. За ход разрешается взять из коробка не более половины имеющихся в нем спичек. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30459  (#027)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10

Имеется три кучки камней: в первой – 50, во второй – 60, в третьей – 70. Ход состоит в разбиении каждой кучки, состоящей более чем из одного камня, на две меньшие кучки. Выигрывает тот, после чьего хода во всех кучках будет по одному камню.

Прислать комментарий     Решение


Задача 30460  (#028)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

Игра начинается с числа 60. За ход разрешается уменьшить имеющееся число на любой из его делителей. Проигрывает тот, кто получит ноль.

Прислать комментарий     Решение


Задача 30461  (#029)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4-
Классы: 8,9

Имеется две кучки спичек: а) 101 спичка и 201 спичка; б) 100 спичек и 201 спичка. За ход разрешается уменьшить количество спичек в одной из кучек на число, являющееся делителем количества спичек в другой кучке. Выигрывает тот, после чьего хода спичек не остается.

Прислать комментарий     Решение


Задача 30462  (#030)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10

Ферзь стоит на поле c1. За ход его можно передвинуть на любое число полей вправо, вверх или по диагонали "вправо-вверх". Выигрывает тот, кто поставит ферзя на поле h8.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .