ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На столе лежат две кучки камней: в первой кучке 10 камней, а во второй - 15. За ход разрешается разделить любую кучку на две меньшие. Проигрывает тот, кто не сможет делать ход. Может ли выиграть второй игрок?

Вниз   Решение


Докажите, что наибольшее расстояние между точками двух окружностей, лежащих одна вне другой, равно сумме радиусов этих окружностей и расстояния между их центрами.

ВверхВниз   Решение


Автор: Фольклор

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 116884  (#11.2.2)

Темы:   [ Биссектриса угла ]
[ Угол между касательной и хордой ]
[ Медиана, проведенная к гипотенузе ]
[ Окружность Аполлония ]
Сложность: 3
Классы: 10,11

Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что  MK = KN.

Прислать комментарий     Решение

Задача 116885  (#11.2.3)

Темы:   [ Правильные многоугольники ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Дан правильный девятиугольник.
Сколькими способами можно выбрать три его вершины так, чтобы они являлись вершинами равнобедренного треугольника?

Прислать комментарий     Решение

Задача 116886  (#11.3.1)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Метод координат на плоскости ]
[ Максимальное/минимальное расстояние ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Найдите наибольшее значение выражения  x² + y²,  если  |x – y| ≤ 2  и  |3x + y| ≤ 6.

Прислать комментарий     Решение

Задача 116887  (#11.3.2)

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.

Прислать комментарий     Решение

Задача 116889  (#11.4.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .