|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC. Длины оснований трапеции равны m см и n см (m и n – натуральные числа, m ≠ n). Докажите, что трапецию можно разрезать на равные треугольники. a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них. Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру. |
Страница: 1 2 >> [Всего задач: 8]
У Вани было некоторое количество печенья; он сколько-то съел, а потом к нему в гости пришла Таня, и оставшееся печенье они разделили поровну. Оказалось, что Ваня съел в пять раз больше печений, чем Таня. Какую долю от всего печенья Ваня съел к моменту Таниного прихода?
В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?
Петя и Вася играют на бирже. Некоторые дни удачные, и в такие дни капитал Пети увеличивается на 1000, а капитал Васи – на 10%. А остальные дни неудачные – и тогда капитал Пети уменьшается на 2000, а капитал Васи уменьшается на 20%. Через некоторое время капитал Пети оказался таким же, как был в начале. А что произошло с капиталом Васи: уменьшился он, увеличился или остался прежним?
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|