|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Найдите ГМТ X, удовлетворяющих неравенствам AX Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр? На столе лежало 100 яблок, 99 апельсинов и груши. К столу подходили ребята. Первый взял яблоко, второй – грушу, третий – апельсин, следующий опять яблоко, следующий за ним – грушу, за ним – апельсин. Далее ребята разбирали фрукты в таком же порядке до тех пор, пока стол не опустел. Сколько могло быть груш? |
Страница: 1 2 >> [Всего задач: 6]
На столе лежало 100 яблок, 99 апельсинов и груши. К столу подходили ребята. Первый взял яблоко, второй – грушу, третий – апельсин, следующий опять яблоко, следующий за ним – грушу, за ним – апельсин. Далее ребята разбирали фрукты в таком же порядке до тех пор, пока стол не опустел. Сколько могло быть груш?
Джо знает, что для перевода из фунтов в килограммы нужно разделить массу в фунтах на 2 и полученное число уменьшить на 10%. Отсюда Джо сделал вывод, что для перевода из килограммов в фунты нужно массу в килограммах умножить на 2 и полученное число увеличить на 10%. На сколько процентов от правильного значения массы в фунтах он ошибётся?
Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. И так игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый – ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?
Впишите в клетки квадрата 3×3 числа так, что если в качестве коэффициентов a, b, c (a ≠ 0) квадратного уравнения ax² + bx + c = 0 взять числа из любой строки (слева направо), столбца или диагонали (сверху вниз) квадрата, то у получившегося уравнения будет хотя бы один корень.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|