|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны три попарно перпендикулярные прямые. Четвёртая прямая образует с данными углы α , β , γ соответственно. Докажите, что Составьте параметрические уравнения прямой пересечения плоскостей 2x - y - 3z + 5 = 0 и x + y - 2 = 0 . Разрезать равнобедренный прямоугольный треугольник на несколько подобных ему треугольников, так чтобы любые два из них были различны по размерам. У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она выбирает из неё половину карт, какие хочет, и отдает Василисе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди открывают по одной карте по своему выбору (соперник видит масть и достоинство открытой карты), начиная с Полины. Если в ответ на ход Полины Василиса смогла положить карту той же масти или того же достоинства, то Василиса зарабатывает одно очко. Какое наибольшее количество очков Василиса может гарантированно заработать? Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?
Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.
Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|