ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник.

Вниз   Решение


   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1.
   б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1/9.

ВверхВниз   Решение


В каждый угол треугольника ABC вписана окружность, касающаяся описанной окружности. Пусть A1, B1 и C1 — точки касания этих окружностей с описанной окружностью. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций?

ВверхВниз   Решение


Чему равна площадь треугольника со сторонами 18, 17, 35?

ВверхВниз   Решение


Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109573  (#94.4.11.1)

Темы:   [ Тригонометрические неравенства ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4+
Классы: 10,11

Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.
Прислать комментарий     Решение


Задача 109574  (#94.4.11.2)

Темы:   [ Принцип Дирихле (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Индукция (прочее) ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9,10,11

Автор: Гулько С.

В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону.

Прислать комментарий     Решение

Задача 108202  (#94.4.11.3)

Темы:   [ Три точки, лежащие на одной прямой ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой.

Прислать комментарий     Решение

Задача 109576  (#94.4.11.4)

Темы:   [ Процессы и операции ]
[ Средние величины ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В вершинах выпуклого n-угольника расставлены m фишек  (m > n).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.

Прислать комментарий     Решение

Задача 60470  (#94.4.11.5)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .