ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что:

а) радиус вписанной окружности треугольника равен (a + b - c)/2;

б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.

Вниз   Решение


Если произведение трёх положительных чисел равно 1, а сумма этих чисел строго больше суммы их обратных величин, то ровно одно из этих чисел больше 1. Докажите это.

ВверхВниз   Решение


Из вершины B параллелограмма ABCD проведены его высоты BK и BH. Известны отрезки KH = a и BD = b. Найдите расстояние от точки B до точки пересечения высот треугольника BKH.

ВверхВниз   Решение


Три лягушки на болоте прыгнули по очереди. Каждая приземлялась точно в середину отрезка между двумя другими. Длина прыжка второй лягушки 60 см. Найдите длину прыжка третьей лягушки.

ВверхВниз   Решение


По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107797

Тема:   [ Тождественные преобразования ]
Сложность: 2+
Классы: 7,8,9

Известно, что a + $ {\frac{b^2}{a}}$ = b + $ {\frac{a^2}{b}}$. Верно ли, что a = b?
Прислать комментарий     Решение


Задача 107801

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

Прислать комментарий     Решение

Задача 108680

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Дан равносторонний треугольник ABC. Сторона BC разделена на три равные части точками K и L, а точка M делит сторону AC в отношении  1 : 2,  считая от вершины A. Докажите, что сумма углов AKM и ALM равна 30°.

Прислать комментарий     Решение

Задача 107799

Темы:   [ Геометрия на клетчатой бумаге ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ ГМТ с ненулевой площадью ]
Сложность: 3+
Классы: 8,9,10

В узлах клетчатой бумаги живут садовники, а вокруг них повсюду растут цветы. За каждым цветком должны ухаживать 3 ближайших к нему садовника. Один из садовников хочет узнать, за каким участком он должен ухаживать. Нарисуйте этот участок.
Прислать комментарий     Решение


Задача 107798

Темы:   [ Взвешивания ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 7,8,9

По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .