|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 20. Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством. Можно ли расставить охрану вокруг точечного объекта так, чтобы ни
к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой
стоит неподвижно и видит на 100 м строго вперёд.) |
Страница: 1 2 >> [Всего задач: 6]
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?
Можно ли расставить охрану вокруг точечного объекта так, чтобы ни
к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой
стоит неподвижно и видит на 100 м строго вперёд.)
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
В игре "Десант" две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)
В остроугольном треугольнике ABC проведены высоты AHA,
BHB и CHC.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|