ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На Поле Чудес выросло 11 золотых монет, но стало известно, что ровно четыре из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино четыре монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?

Вниз   Решение


Автор: Рубин А.

Два человека шли по прямой дорожке навстречу друг другу с постоянными скоростями, но один – медленно, другой – быстро. Одновременно каждый отпустил вперёд от себя собаку (собаки бежали с одной и той же постоянной скоростью). Каждая собака добежала до другого хозяина и возвратилась к своему. Чья собака вернулась раньше – быстрого хозяина или медленного?

ВверхВниз   Решение


В парламенте некоторой страны две палаты, имеющие равное число депутатов. В голосовании по важному вопросу приняли участие все депутаты, причём воздержавшихся не было. Когда председатель сообщил, что решение принято с преимуществом в 23 голоса, лидер оппозиции заявил, что результаты голосования сфальсифицированы. Как он это понял?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 103729

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

В парламенте некоторой страны две палаты, имеющие равное число депутатов. В голосовании по важному вопросу приняли участие все депутаты, причём воздержавшихся не было. Когда председатель сообщил, что решение принято с преимуществом в 23 голоса, лидер оппозиции заявил, что результаты голосования сфальсифицированы. Как он это понял?

Прислать комментарий     Решение

Задача 103738

Тема:   [ Объединение, пересечение и разность множеств ]
Сложность: 2
Классы: 6,7

Среди математиков каждый седьмой — философ, а среди философов каждый девятый — математик. Кого больше: философов или математиков?

Прислать комментарий     Решение


Задача 103732

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 7

Замостите плоскость одинаковыми а) пятиугольниками; б) семиугольниками.

Прислать комментарий     Решение


Задача 103734

Тема:   [ Раскраски ]
Сложность: 2+
Классы: 6,7,8

Раскрасьте плоскость в три цвета так, чтобы на каждой прямой были точки не более, чем двух цветов, и каждый цвет был бы использован.

Прислать комментарий     Решение


Задача 103733

Темы:   [ Системы точек ]
[ Правильный (равносторонний) треугольник ]
[ Перенос помогает решить задачу ]
Сложность: 3-
Классы: 5,6,7,8

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .